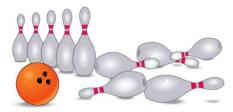
Finding the whole – adding together

Discover

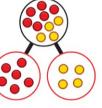


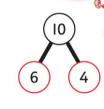
(1) a) How many (2) are left up?

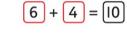
How many \bigwedge are knocked over?

How many are there altogether?

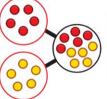
b) I more is knocked over.


Now there are 5 \bigcirc left up and 5 \bigcirc knocked over.


How many \bigcirc are there altogether?



There are $6 \stackrel{\bigcirc}{\wedge}$ left up.

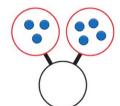

There are $4 \stackrel{\bigcirc}{\wedge}$ knocked over.

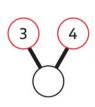
There are $10 \stackrel{\bigcirc}{\wedge}$ altogether.

b) There are $5 \stackrel{\bigcirc}{\wedge}$ left up.

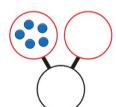
There are 5 \(\frac{1}{0} \) knocked over.

There are IO altogether.


Think together

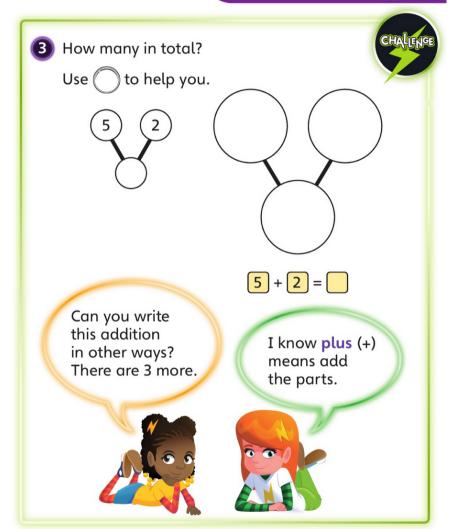


How many are there in total?


There are \bigcap in total.

In total also means the two parts added together.

2 How many \bigcirc are there in total?



There are \bigcap in total.

